
National Aeronautics and
Space Administration

Ames Research Center


Moffett Field, California 94035-1000


Andre Goforth, Norman R. Howes,
Jonathan D. Wood, and Michael J. Barnes

 NASA Technical Memorandum 110367

Real-Time Design with
Peer Tasks

October 1995



National Aeronautics and
Space Administration

Ames Research Center


Moffett Field, California 94035-1000


 NASA Technical Memorandum 110367

October 1995

Real-Time Design with
Peer Tasks
Andre Goforth, Ames Research Center, Moffett Field, California
Norman R. Howes and Jonathan D. Wood, Institute for Defense Analyses, Alexandria, Virginia
Michael J. Barnes, Recom Technologies, Moffett Field, California



Real-Time Design with Peer Tasks

ANDRE GOFORTH, NORMAN R. HOWES,* JONATHAN D. WOOD,* AND MICHAEL J. BARNES†

Ames Research Center

Summary

We introduce a real-time design methodology for large
scale, distributed, parallel architecture, real-time systems
(LDPARTS) that approaches system scheduling analysis
in a way different from those methods that use a scalar
metric of urgency such as found in rate (or deadline)
monotonic theories. The latter assume the place for sched-
uling prioritization to be at the functional level of run-
time processes. For example, in the Ada programming
language this refers to task scheduling. In our method, the
fundamental units of prioritization, which we call work
items, are system level or domain specific objects with
timing requirements (deadlines) associated with them in
the requirements specification. For LDPARTS, a work
item consists of a collection of tasks. No priorities are
assigned to tasks or, equivalently, tasks have equal priori-
ties. Such a collection of tasks is referred to as peer tasks.
Current scheduling theories are applied with artifact
deadlines introduced by the designer whereas our method
schedules work items  to meet specification deadlines
(sometimes called end-to-end deadlines) required by
the user.

The new method supports these scheduling properties.
The scheduling of work items is based on domain specific
importance rather than task level urgency and still meets
as many work item deadlines as can be met by scheduling
tasks with respect to urgency. Second, the minimum
(closest) on-line deadline that can be guaranteed for a
work item of highest importance, scheduled at run time, is
approximately the inverse of the throughput, measured in
work items per second. Third, throughput is not degraded
during overload and instead of resorting to task shedding
during overload, the designer can specify which work
items to shed. We prove these properties in a mathemati-
cal model (ref. 1). The degree to which these hold for a
specific system depends on how small the statistical
variance of work item throughput is over the required
system performance envelope. The method works best in
a project with a “cut and try” iterative development
approach, where measurement of work item throughput
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may be made under as realistic system load conditions
as possible.

1. Introduction

The real-time methodology we introduce addresses three
issues in large scale, distributed, parallel architecture,
real-time systems (LDPARTS). We base the feasibility
of our approach on empirical data found in the application
of our method to an existing case study. Though the case
study is in the Ada83 programming language, which
comes with its own run-time environment, we believe the
method is readily applicable in any environment with
inter-process communication (IPC) and network services
that provide robust asynchronous concurrency (ref. 2).
The three unique issues are how to:

(1) do on-line scheduling with deadline guarantees;

(2) minimize scheduling overhead; and

(3) sustain performance in overload conditions.

The first issue has been discussed as the “disconnect”
between real-time design theory and scheduling theory at
a workshop on Large, Distributed, Parallel Architecture,
Real-Time Systems (ref. 3). This workshop was held at
Institute for Defense Analyses (IDA) and sponsored
jointly by the NASA Ames Research Center and the
Ballistic Missile Defense Office (BMDO).

Designers of complex, real-time systems must address
robustness, efficiency, and availability as well as timing
(ref. 4). In many cases, the resulting system decompo-
sition is not readily, if at all, analyzable by current
scheduling theory techniques, hence the disconnect.
While workshop participants agreed that real-time
systems need to have correct timing (i.e., meet required
deadlines), they disagreed about systems being designed
to accommodate a specific scheduling approach.

All participants agreed that schedulability analysis needed
to be part of the design process. On one hand, the sched-
uling theorists thought that schedulability analysis should
drive the design process. Their argument was that, given
the ability of a real-time system to meet its timing
requirements is so important, if schedulability analysis
(often referred to as feasibility analysis) is not begun in
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the earliest phases of design, the resultant system may not
be capable of meeting its timing requirements. On the
other hand, several designers were not convinced that,
even if the system’s tasks satisfied the constraints of a
given scheduling theory, this actually ensured that the
final system would behave as predicted. One reason given
is that current scheduling theories do not adequately make
allowances for all significant factors related to “real
world” behavior found in LDPARTS.

In regard to the second issue, some participants noted that
current scheduling theories are applied to artifact dead-
lines, introduced by system designers, and not to specifi -
cation deadlines, required by the users, thus introducing,
arguably, significant overhead, just to be able to use these
theories. Rate monotonic theory (ref. 5) is one example
that was cited, especially in attempts to use it in
LDPARTS.

The third issue, which was not as universally important to
workshop participants as the first two, was very important
in the kind of systems ARPA (Advanced Research
Projects Agency), our sponsor, had us investigate. In
section 3, we discuss a hypothetical air defense system
where, because of the hostile environment, so-called
nominal operating conditions must include sustained
operation in overload conditions. Put another way, such
systems must be designed to operate in overload
conditions as if these were part of nominal operating
requirements.

Our design approach consists of the application of these
fundamental rules:

Rule 1. Schedule work items by importance to meet
their specification deadlines. Use peer task sets to
accomplish these work items.

Rule 2. Model each real world process with a single
task (independent thread of control).

Rule 3. Reduce the mean service time of cyclic
functions.

The underlying concepts and rationale for these rules and
how to apply them are discussed in section 4.

Our approach addresses the three issues by introducing
the paradigm of work item  and its importance as a metric
for scheduling prioritization. In contrast, some real-time
scheduling approaches are based entirely on urgency,
such as Earliest Deadline First (EDF) where the next task
to be executed is the one with the nearest deadline. Any
task significance is identical to the task’s deadline, i.e.,
urgency. For real-time problems where all or most of the
information necessary to schedule the tasks is known in
advance, scheduling based on urgency can be appropriate.
The reason is because the designer of the system may be

able to size the system appropriately based on a priori
knowledge so as to rule out the possibility of ever having
the system in a state of “overload,” i.e., a state in which
there are more requests for real-time service during some
(possibly temporary) period than the system can possibly
respond to. Such is often the case for closed loop control
systems and low level sample data systems. The concept
of importance is elaborated on in section 2.

Another element of our approach is its focus on work
item throughput. A common design characteristic of real-
time systems is throughput. The required throughput or
rate, items processed per second, depends upon the needs
of the application. For many applications real-time
behavior means “fast enough.” For others, there is an
additional requirement of a sufficiently small variance
in the throughput. For example, consider the case of a
system, X, that can accomplish tasks at some fixed rate,
say 30 milliseconds, with a very small standard deviation,
and another system, Y, that can accomplish the same
tasks at some fixed rate, say 25 milliseconds, but with a
large standard deviation. Now Y is clearly “faster” than
X, but if we find the standard deviation of Y to be so
large that it would occasionally cause Y to perform the
task in, say 75 milliseconds, whereas the standard devia-
tion of X is so small that it could never (in the lifetime of
the system) execute the task in over 31 milliseconds, then
we may claim that X exhibits “real-time behavior” with
guaranteed deadlines, while Y does not.

In our experience with the method which is discussed in
section 5, we have found work item performance to be
sufficiently stable so as to allow us to draw conclusions
about the system’s ability to meet hard deadlines.
Furthermore, work item throughput was found, for all
practical purposes, to be constant even in overload
conditions. The scheduling properties supported by our
methodology are as follows:

(1) Work item processing time (after preemption of any
lower importance work item) is essentially constant, and
the inverse of the throughput, measured in work items per
second, can be considered the minimum on-line guarantee
that can be met if no work item of higher or equal
importance awaits processing.

(2) Work items based on importance may be scheduled
without incurring degraded throughput caused by on-line
task scheduling.

(3) The maximum number of the most important work
item deadlines may be met during overload and instead of
resorting to task shedding during overload, the designer
can specify which work items to shed.

We provide proofs of these in section 6. We use the
mathematical model and results of Detouzos and Mok



3

(ref. 1), which we will refer to as the D-M model. It is
common knowledge that when scheduling theories are
applied to real world problems, the results are not what
the theories predict. Why is this, in view of the fact that
these scheduling theories are “proved mathematically”?
It is because mathematical models, including the D-M
model, make a number of assumptions about the real-time
environment so as to render them not sufficiently accurate
in predicting how a real-time system will behave. Some
such assumptions are (1) there is no scheduling overhead,
(2) there is no preemption overhead, (3) the computation
time of each task is constant, (4) the tasks are relatively
independent, at least from a scheduling point of view, and
(5) time is quantized rather than continuous. This does not
mean these models are of no use; rather, their predictive
power is limited to certain environments. Only careful,
comprehensive testing can assure that real-time systems
meet their deadlines. The “guarantees” of real-time
scheduling theories are helpful insofar as careful,
comprehensive testing can verify how well the system
behaves in relation to the theory as well as, and more
importantly, in relation to the requirements. In section 5,
we discuss our experimental findings of real-time
behavior that matches what the theory predicts, proper-
ties 1 through 3 above, and behavior that deviates from
the theory.

We extend our appreciation to Mark Boyd and David
Galant of Ames Research Center for their diligent efforts
in reviewing this paper and making significant
recommendations.

2. Significance and Urgency

For our purposes, the concept of significance has to do
with the impact of what will happen if a work item misses
its deadline. The concept of urgency has to do with how
close the deadline for the work item is to the current time
(time now). It is possible to have work items that are
highly significant but not urgent or that are very urgent
but not significant. In general, all work items have some
measure of significance and urgency, and there may be
work items that are simultaneously very significant and
very urgent. Our concept of importance is the primitive
idea of doing the right thing at each instant, in the best
interest of providing the desired solution to the problem.
The domain expert or “problem owner” is in the best
position to identify importance. At the workshop several
real-time specialists stressed the need to have real-time
systems that do not give priority to executing significant
tasks that are not urgent in favor of urgent tasks that may
not be significant, thereby causing a deadline for a
(possibly insignificant) task to be missed unnecessarily.
The approach we advocate does not violate this need.

This follows from our concept of importance as a
combination of significance and urgency. Formally, we
write importance as a function of significance and
urgency, i.e., I = F(s, u)  where F is some function of
the significance s and the urgency u. Furthermore,
importance is a dynamic concept in that its value may be
a function of time, where both significance and urgency
are functions of time, say s(t) and u(t). Clearly, the
urgency u(t) is continuously changing with time, while
the significance s(t) may be constant or changing with
time. We may write I as I(t) = F[s(t), u(t)].

For our purposes, we assume that F is definable so that
urgent work items will not miss their deadlines unneces-
sarily, i.e., be missed while a work item of higher
importance is executed whose urgency is low enough
(deadline far enough away) that the urgent work item
could have been executed and still have had enough time
to meet the higher importance work item’s deadline.
We make no attempt to define a particular importance
function F for each work item because such functions are
domain specific. We assume that these functions exist and
can be evaluated at any time t . Furthermore, we will not
deal with the issue of how long it takes to compute the
importance functions on line. One can construct
pathological problems in which the time to compute the
importance functions is arbitrarily large. However, for
many important problems the time to evaluate the
importance functions is bounded and small. Clearly, an
extremely complex importance function may not be
suitable for a given real-time problem. How to design
importance functions is not within the scope of this paper.
What we will discuss in the next section is how to use
them under the assumption that appropriate importance
functions can be evaluated at any time t. As an example,
note that “aging algorithms” can be incorporated as u(t) in
an importance function F so that the importance of a task
becomes greater as time passes.

3. LDPARTS Example

A real-time problem (ref. 6) that illustrates the class of
problems our method addresses is as follows: Imagine an
air defense system that must be capable of simultaneously
handling up to 1,000 “radar tracks” of possible “threats
(targets),” up to 100 known threats (tracks that have pre-
viously been identified as targets), and up to 10 engage-
ments where an engagement means that a defensive
weapon system is employed against a known target.
Tracks may include many things other than threats, such
as civilian aircraft in the area, friendly aircraft, decoys,
and birds, as well as real threats.
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The numbers 1,000, 100, and 10 are used only for illus-
tration. It is not meant to imply that a real air defense
system would have this requirement. The differences in
orders of magnitude from 10 to 100 to 1,000 are one
example of a physical characteristic typical of an
LDPART system. For instance, the air defense system
may only have 10 launchers or 10 antiaircraft weapons
with which to engage targets. The amount of processing
may increase as targets become known and approach the
defended area more closely, thereby limiting the number
of actual targets that the system can handle to only 100.

Suppose that the radar subsystem, because of its physical
characteristics, gets information on tracks once a second
but that tracks can appear aperiodically on the radar
screen and also vanish aperiodically from the radar
screen. Further, suppose there is a requirement that once a
track “appears” on the radar screen, it must be determined
within 2 seconds whether the track is a target. The test or
tests that are performed to determine this may not be
conclusive, in which case the track may appear again to
the radar within another second and need to be repro-
cessed to determine whether the track is a target. This
goes on until the track either disappears from the screen
or possibly gets so close that it is automatically classified
as a target.

Furthermore, suppose that once a track is classified as a
target, it then has to be “monitored” within 1 second each
time the radar “illuminates” the target. All targets get
illuminated approximately once a second, but since the
targets are moving with respect to the radar, the time
between illumination need not be periodic for an indi-
vidual target. The monitoring of the track determines the
relative lethality of the target and therefore influences the
significance of the target. Finally, suppose that once a
target is identified it must be engaged within 2 seconds
provided there is a weapon system available to engage it,
with priority being given to engaging the most important
threats first. Suppose further that for the targets that are
currently engaged, guidance update information has to be
relayed to the defensive weapon (say an air defense
missile) every 100 milliseconds while it is homing in on
the target.

For each requirement corresponding to the various
deadlines of 2 seconds, 1 second, and 100 milliseconds,
there is a significance associated with the requirement. If
the calculation associated with one of the 1,000 tracks
misses its deadline, the track may temporarily be “lost.”
This has to do with the fact that tracks frequently “cross”
on the display corresponding to points in time where the
radar cannot distinguish between two tracks and therefore
may not know, for instance, what direction the track is

moving in without doing a “correlation” calculation. If a
track is “lost” it may quickly reappear and no overall
harm may be done as the calculations can begin again
shortly thereafter. Though there is some risk associated
with this momentary loss because precious time is used in
updating track information, we may assume that the
significance of updating an unidentified track, in these
circumstances, is small.

However, if a track that has been already classified as a
target is temporarily lost, the risk is greater. Furthermore,
not all threats have the same lethality. One incoming
target may have the capability to wipe out the whole air
defense system while another may only have the capa-
bility to degrade its performance. The air defense system
is also responsible for protecting other assets in the area
as well as itself. Some identified targets may not be
approaching the air defense system but moving toward
one of these assets. The value of the asset then affects the
significance of the target. Finally, if a target is engaged
and the guidance update deadline is missed, the defensive
weapon may be temporarily or permanently lost, which
may be the highest risk of all.

To complicate the situation, suppose that it is possible for
the enemy to field thousands of decoys, or the system
may have to be used in the “heat of battle” where the
friendly aircraft in the vicinity together with civilian
traffic and enemy threats temporarily exceed the capacity
of the system in one way or another, i.e., more threats
than 100 or more engageable targets than 10. Air defense
systems are often deployed in multiple locations in an
area. They are designed to share the overall battle load,
but due to chance, one air defense unit may encounter
much more of the load than others. It is therefore
impossible to design such a system so that it will never
encounter overload.

It may be becoming clear to the reader that if the sched-
uling of tasks is based only on urgency, we may maxi-
mize the number of deadlines met while unnecessarily
missing the really important work item deadlines. There
are two things left to discuss about this example. First we
want to discuss why such systems tend to start missing
critical deadlines prematurely, and second we want to
discuss the behavior of current scheduling algorithms
during overload. Both of these discussions provide
motivation for the method we will introduce.

First, real weapon systems of the type suggested by our
example are often geographically distributed and so
complex that multiple designers are required to design
various parts of the system. There are literally hundreds
of tasks (independent threads of control) and no one
person understands all the ramifications of task-to-task
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interaction. Because the current mathematical models
used in real-time analysis do not sufficiently account for
all the scheduling factors in the real world problem space,
these systems often begin missing deadlines at loads far
lower than the theoretical overload level for which they
were designed.

Why do such systems tend to start missing critical dead-
lines prematurely? In our example, note that although the
physical constraints of the problem (namely the behavior
of the radar) tend to give the problem a periodic flavor,
the problem is fundamentally aperiodic because radar
tracks “appear” at random times. After first appearance, if
the track is not lost, the radar updates tend to be fairly
periodic if the target is moving slowly or if it is approach-
ing. But not all targets satisfy these two requirements.
Also, threats are identified aperiodically. Past attempts,
rooted in using periodicity as a system organizational
principle, try to solve problems like this by assigning a
single task the job of doing the computation for each of
these mostly periodic functions, e.g., having a single
task do the computation for updating all the tracks. A
rationale, for example, is that all the radar updates for
all the tracks will be obtained within approximately
1 second, leaving one more second in which to do the
computations, without missing the deadline for any of
the tracks. At the end of 1 second, another set of updates
will become available for the next execution of the
task.

The difficulty with this design approach is that the
individual tracks are the items that have significance. If a
single task is doing the computation for all the tracks, it is
mixing the most significant work with the least significant
work without discriminating one from the other. An
alternative and preferable approach is to categorize tracks
by their significance as they are identified and give pri-
ority to the processing of more significant tracks as the
load increases. Friendly tracks have to be maintained as
well as enemy tracks during battle, but under all load
conditions—nominal, significant, or overload—there
needs to be a way of emphasizing the threats and dis-
posing of them. On the other hand, we do not have to go
to the other extreme of assigning one task per track. An
effective design allows for assignment of end-to-end
resources that process according to significance or
importance as identified in end user requirements. The
emphasis on decomposing the system workload into
periodic components and scheduling them based on
urgency or frequency tends to obscure this importance
and, particularly, how the system will behave when

processor utilization is high, i.e., in periods of heavy load
or overload. As Briand (ref. 7) states in his paper:

It is not because a task’s execution time is the
shortest or that its deadline is the closest that is more
important [but] that this task preferably achieves its
deadlines. We are driven back to the initial problem
of the task priority allocation algorithms: the only
way to formulate a non-specific algorithm is to
ignore the task’s semantics, to consider that all of
them are created equal, though they are not. Such a
priority allocation algorithm is valid only if from an
applicative point of view, no task is more important
than another (no program feature is in jeopardy
when the concerned task can’t execute within its
normal execution window). In the real computing
world, there is often a known risk of processing
resource shortage during heavy load situations.
Specifically in those situations that are irrelevant
with the common scheduling model paradigms, one
should carefully balance the applicative conse-
quences of missing a deadline before mechanically
allocating priorities.

For our example problem, dealing with a threat (target) as
a whole is important so as to be able to meet the overall
deadline of engaging and destroying the threat before it
damages us. Meeting all the component deadlines of all
the tasks that cooperate together to do the computations
necessary to effect this end objective must be considered
secondary. More important is identification of a new track
as a target and to engage it within 4 seconds if at all
possible, for example. This is the essential deadline and
the only one that really matters in the final analysis. There
may be scores of tasks that meet 10 millisecond artifact
deadlines to accomplish this feat; it really does not matter.
What matters is meeting the 4 second specification
deadline specified in the requirements.

The second point is that if real-time air defense systems
or battle management systems rely on urgency-based
scheduling techniques alone they may not behave as
planned under heavy load. Clark (ref. 8), in a paper
done for Rome Air Development Center, demonstrates
how several widely used scheduling policies lose their
ability to meet deadlines as they approach and exceed
100 percent load. This results in the well known through-
put decay experienced in many real-time systems as load
increases. Figure 1 depicts his results for sets of tasks that
do not share resources. The results get worse as the tasks
become less independent (i.e., cooperate more).
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Figure 1. Percent deadlines met.

The four curves in figure 1 represent the Dependent
Activity Scheduling Algorithm (DASA) introduced by
Clark in the paper, Locke’s Best Effort Scheduling
Algorithm (LBESA), a static priority scheduling algo-
rithm, and the Earliest Deadline First algorithm which he
labels as “Deadline” rather than EDF. Notice that EDF
does the worst under load and yet it is the algorithm that
has been proven to be “optimal” in the D-M model (for
the single processor case) in the sense that if any task set
can be scheduled by any other algorithm to meet some set
of deadlines, then it can be scheduled using EDF to meet
those deadlines. This serves to illustrate the difference
between the mathematical models in which scheduling
theorists work and the real world. Briand (ref. 7) also
presents some similar graphical information showing how
urgency based scheduling can lead to premature missing
of deadlines. Even though in overload conditions Clark’s
DASA algorithm meets more deadlines than the other
algorithms, these may not be the most important dead-
lines. Clark also shows that his algorithm “accumulates
more value” in the time value sense than the other algo-
rithms thereby indicating that it is better at distinguishing
significance while still meeting the most deadlines. This
makes Clark’s algorithm an attractive contender for
LDPARTS. But Clark’s algorithm does not ensure that
the most important work will get done at any instance in
time. Our approach addresses this concern and addresses
the concern of minimizing throughput degradation during
overload.

4. The Peer Tasking Design Method

The peer tasking design method derives its name from the
fact that the tasks in the system are not prioritized. If tasks
have no priorities, how can important functions get done
ahead of functions of lesser importance? The key idea is
that the work is scheduled at a higher level of granularity
than individual tasks.

The concept of a task is used in different ways in the real-
time literature. Often it means some schedulable unit of
work. At other times, it means an individual thread of
control wherein multiple tasks cooperate. We will need
both of these distinct concepts and will try to make clear
in which sense we are using the term task. Most real
world, real-time system designs decompose real-time
requirements from the system specification into individ-
ual processes called “tasks” and assign “deadlines” to
these tasks, while the real-time specification provides
deadlines with respect to the requirements rather than
with respect to these individual tasks. We refer to these
individual task deadlines as artifact deadlines because
they are artifacts of how the designer decomposed the
system into tasks rather than any inherent timing
requirement in the specification.

To be precise, we will refer to the deadlines called out in
the requirements specification as specification deadlines
to distinguish them from artifact deadlines. From many
discussions with real-time practitioners at conferences
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and workshops and from observing how certain govern-
ment systems were designed, we believe that common
practice takes a requirement from the specification that
has a deadline associated with it (i.e., a timing require-
ment) and refer to that deadline as the “time budget.”
That requirement is then decomposed into individual
“tasks” that may either be smaller components of work
that can be parceled out to programmers, or concurrent
threads of control in a concurrent design, or some mixture
of both. A sequential order in which these tasks have to
execute or a directed graph structure that determines an
ordering in which they can execute may or may not exist.
The time budget is then broken down into individual time
budgets for the individual tasks that the designer believes
will ensure that the overall requirement will be completed
within the specified deadline, if each of the individual
tasks meets its time budget.

We refer to these work requirements in the specification
that have associated deadlines as work items. These are
the units of work that we will schedule (by the application
program—not the operating system or the language
run-time system) rather than the individual tasks that
accomplish the work items. Work specified in the require-
ments specification with no associated timing require-
ments will be executed in the background as time permits.
These lower level (finer granularity) units of work that we
are calling tasks have no intrinsic priority, but while they
are executing, they can be thought of as inheriting the
priority of the work item. It is not necessary, however, to
think of them as having any priority whatsoever, because
it adds nothing to the design. Thus, a work item is a
collection of tasks, which may or may not have a linear or
partial ordering, that performs the work item’s execution.

Work items may be independent or they may cooperate to
accomplish a larger objective. We will not require that
they be independent. Instead, we require that a higher
importance work item preempt a lower importance work
item. We also assume that specification deadlines are
associated with work items and, if work items cooperate
to perform larger objectives, then there are no deadlines
associated with these larger objectives. In our air defense
example, the work items may be the engagements of
individual threats and these work items cooperate in the
overall objective of air defense, but there is no deadline
associated with air defense. This brings us to our first
design rule:

Rule 1. Schedule work items by importance to meet
their specification deadlines. Use peer task sets to
accomplish these work items.

This rule implies that no work item will miss its deadline
unnecessarily. A lower importance work item w1 misses
its deadline, only because some work item w2 of equal or

higher importance was executed instead. Since w1 could
not also be scheduled to meet its deadline at the time w1
needed to begin execution to meet its deadline, the system
was in an overload state. Consequently, it was necessary
to shed w1 in favor of w2. In an overload state the system
must shed some of the load. In our approach, load
shedding is based on importance. Of course the shedded
load may be temporarily buffered in hope that the over-
load condition is temporary, and where there is still
importance associated with doing certain work items late.
With current real-time scheduling algorithms, work
shedding is done at the task level and is based on some
other criteria, e.g., urgency or frequency.

We have discussed the decomposition of the system work
load into work items for scheduling purposes, but we
have not discussed decomposing the system into individ-
ual tasks as part of the design process. Based on the
discussion so far, one might think that the way to proceed
would be to decompose work items into tasks. There is no
requirement that each work item have a separate task set.

We propose that the decomposition of the system into
tasks is done according to what we call process modeling,
a design technique referred to as physical concurrency  in
reference 9. In this context, process means a real world
process in the problem domain as opposed to a process in
the sense of an executable unit of code. A real world
process is a set of coordinated activities that accomplishes
some larger function. (In the language of object oriented
design a process is a group of cooperating objects.) A
word of caution: work items are not processes. Work
items are a decomposition of the system workload. What
we are describing here is a decomposition of the system
itself. In the air defense example, managing the input
stream of radar tracks—which includes interrupt
handling, segmenting the incoming stream into individual
tracks, and buffering of track updates—is a real world
process. Correlating track updates to existing tracks is
another. Processing an unclassified track to determine if it
is a target is yet another, as is processing an identified
target to determine its lethality (significance). By process
modeling we mean modeling each of these real world
processes in the designed system with a single task
(independent thread of control). This brings us to our
second rule:

Rule 2. Model each real world process with a single
task (independent thread of control).

The central idea in Rule 2 is that process modeling should
be the only use for concurrency (application level pro-
cesses or tasks). The specification of semaphores,
buffering messages, and other “low-level” concurrency
constructs should not part of the application or global
level design.



8

The partitioning of the system into tasks using Rule 2
produces a design in which all tasks cooperate to produce
one or all of the work items. A consequence is that no
task can be shed during an overload condition because no
work items could then be accomplished. This character-
istic will be evident in the design used in our case study.

Nothing in the rule requires one task to have priority over
another. Without priorities, task scheduling defaults to
merely a first come first serve dispatcher. Such is the case
with Ada83 tasks (and, in our case, Ada running on top of
Unix operating systems). Furthermore, nothing in the rule
requires synchronous process or task interaction, which,
again, is the case with Ada 83 tasks.

Finally, we have the issue of the design optimization. The
rules we have advanced thus far may be thought of as
architectural structuring principles with first and second
order effects on performance. Once the architecture is
defined, optimization may provide a higher order effect.
Our approach to optimization tunes at the intertask and
task interface level.

The real world processes in the problem are being
modeled by individual tasks (independent threads of
control) in our approach. If we think of these tasks as an
interrelated collection of queues we see that the only way
to increase throughput (performance) is to reduce the
mean service times of these queues. For a given queue,
two things contribute to its mean service time. The first is
the time to service the queue, and the second is the time
to get a request from an “upstream” queue to this queue.
If the implementation language is Ada83, the choices of
how the tasks interface (e.g., conditional entry calls as
opposed to a bare rendezvous) influence the latter delay
so it is often helpful to experiment with various task-to-
task interface methods. Continuing this interrelated
collection of queues analogy, we see that within the
individual tasks there are functions performed repeatedly
which require significant computation time. We will refer
to these as cyclic functions.  If we think of these cyclic
functions as queues, we have collections of queues within
queues. To increase throughput, then, requires reducing
the mean service times of these cyclic functions, although
a given time decrease may not lead to a decrease at the
work item level.

To systematically reduce the mean service time of cyclic
functions, one must first learn what these service times
are. This presupposes that we can measure these service
times which, in turn, implies that there is something to
measure. Consequently, we advocate the following
development approach.

Design the system using Rules 1 and 2. Then implement
the real-time components of the system, stubbing off non-

real-time components. Then measure the throughput of
work items in the various scenarios of interest. This gives
us the deadlines that can be “guaranteed on-line” by the
system along with the standard deviations associated with
these guarantees. If any of these throughputs, deadlines,
or standard deviations fall short of our expectations, we
make further measurements, but only in the areas that
might affect these throughputs or deadlines.

The next round of testing measures the mean service
times of the cyclic functions. To perform these measure-
ments, an event recording package or a monitoring tool is
helpful. Knowing the mean service times of the cyclic
functions provides insight as to where the bottlenecks
reside. This process is continued until it can be deter-
mined that the system can meet the required specification
level deadlines, or an iteration of Rule 1 or 2 or both are
needed. We summarize the process in the following rule
that we call the tuning rule.

Rule 3. Reduce the mean service time of cyclic
functions.

Designing in accordance with these three rules we call the
peer task (process) design method .

5. Case Study

The Remote Temperature Sensor (RTS) system is an
example of a real-time system dedicated to the monitoring
of a physical system (in this case, 16 furnaces). The RTS
example originally appeared in the book titled Real-Time
Languages: Design and Development by Young (ref. 10).
Nielsen and Shumate present a version programmed in
the Ada language as Case Study No. 1 (ref. 11). Sanden
(ref. 12) and Howes (ref. 13) provide additional studies
that include critiques of Nieslen and Shumate’s design.
In figure 2, the Howes design is presented via Buhr
diagrams (ref. 14) and served as a basis for the case study
discussed below.

We provide a short summary of the Buhr diagram
notation used here and refer the reader to the above
reference for an in-depth explanation. The parallelograms
denote Ada tasks which are concurrent objects or pro-
cesses. Interconnecting lines denote communication,
which may be thought of as asynchronously occurring,
concurrent procedure calls. In these calls, parameters may
be passed in either direction; the direction is usually
denoted with an arrow, and the passed parameter values,
if any, are denoted next to the line. Ada provides alterna-
tives for making calls that are conditional, i.e., that
depend on the readiness of the called or the length of time
one is willing to wait for a call to be accepted. These are
denoted by arcs that approach a parallelogram (task) and
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Figure 2. Howes design.

curve back toward their origination. Some of the diagrams
show parallelograms contained within larger boxes and
show arrows touching very small boxes tangent to the
sides of the larger boxes. These denotations deal with Ada
specific details where the designer has chosen to guard
the accessibility of objects according to acceptable
software engineering practice.

Briefly, what the RTS system does is receive messages
from a host system in the form of control packets (CPs)
and send messages back to the host in the form of data
packets (DPs). Each DP contains a furnace number and its
temperature. These temperature readings are obtained by
sending a furnace number to the digital thermometer,
which returns that furnace’s temperature. The CPs from
the host are used to change the rate at which the furnaces
are read. They contain a furnace number and its sensing
rate. In our design, we allowed for the requirement that
different furnaces may be sampled at different and
unrelated rates and that these are subject to change at
any time with the issue of a new CP from the host.

This is an example of a system with dynamically chang-
ing sensing rates that makes designing to accommodate a
scheduling policy based on static, or at most finitely many

different, periodicity sets (modes) unwieldy. Note also
that the processing of periodic and aperiodic messages is
interwoven which further compounds the application of
such a scheduling policy. The arrival rate of control
packets, control packet acknowledgments, and data
packet acknowledgments  is random, whereas the arrival
of data packets, which are generated at the current
sensing rate for a given furnace, is periodic.

Our design of the RTS system divided the work load of
the system into two work items, namely the processing of
a CP (CP work item) and the processing of a DP (DP
work item). CP processing involves (1) the receiving of a
CP message from the host system, (2) the updating of the
furnace reading database, (3) the packaging of a CP
Acknowledgment message, and (4) the transmission of
this message to the host. DP work item processing
involves (1) monitoring the furnace reading database and
the clock to determine if it is time to read another furnace,
(2) sending a furnace number to the digital thermometer,
(3) receiving a temperature reading from the digital
thermometer, (4) packaging the temperature reading into
a DP, (5) sending the DP to the host, (6) receiving the DP
by the host, and (7) receiving the DP Acknowledgment
from the host system.



10

We now discuss measurements made to verify how well
the case study’s real-time behavior matches the three
scheduling properties mentioned earlier. These measure-
ments are by no means exhaustive, but do illustrate the
feasibility of our approach.

Since the processing of DPs (in the absence of CPs) is
essentially periodic, we first measured the minimum
on-line deadlines that could be met for a processing load
consisting solely of DP work items. We also measured the
timing stability; i.e., the standard deviation of work item
throughput obtainable with our design.

We determined that the mean time for processing a DP
work item on a SUN 3/60 was 7.348 milliseconds and the
standard deviation was 37.4 microseconds. In other
words, there was an extremely small variance around the
mean and an on-line guarantee of, say, 8 milliseconds
could be made that would be practical for a reasonable
design. If a more conservative guarantee was desired,
then statistically an on-line guarantee of 9 milliseconds
would not be violated within the lifetime of the system.
The mean and standard deviation of CP work item
requests for service were found to be 9.915 milliseconds
and 129.6 microseconds. This timing stability (at the
work item level) is a step toward verification of
scheduling property 1.

Next, we measured the mean and standard deviation of
DP work item processing during heavy overload. It was
found that the behavior was exactly the same and likewise
for CP work items. In our design, during overload, excess
requests for service are shed and they are not buffered for
later processing. During overload and non-overload, the
DP work item requests for service are honored, by
application program design, in a way that is fair with
respect to all the furnaces, with the oldest request for
service for a given furnace being shed first. We note that
such timing stability was achieved with a general purpose
operating system, Unix, and that other applications may
achieve similar real-time behavior without resorting to the
use of a special purpose real-time one. This result is a step
toward verification of scheduling property 3.

We now report on measurements to verify whether work
item performance incurs degradation in throughput
caused by on-line task scheduling, which is scheduling
property 2. In regard to this property, we found preemp-
tion of tasks (processes) to have a significant impact on
the real-time behavior. Before we discuss our findings we
discuss the issues of preemption in the D-M model and in
implementation.

The D-M model assumes that preemption time is zero, so
it has no predictive power when it comes to questions
regarding preemption times in real-world systems.

Several real-time practitioners with whom we discussed
preemption overhead were aware that, in their systems,
preemption overhead is significant. Others seemed to
ignore it based on the assumption that context switching
times are “small’” (usually in the 150 to 200 microsecond
range) and can be included in the task’s computation time
for purposes of analysis. Clearly no real world preemption
scheme can work perfectly, like the zero preemption
assumption of the D-M model. In the real world we
usually, if not always, have preemption points. Checks to
determine if preemption is needed usually occur at certain
points in the application program or, in the case of
interrupt driven preemption, at regular intervals deter-
mined by signals from an interval timer. In the limit, it is
conceivable that a system could be designed that would
check to see if preemption was needed after each
instruction was executed, but clearly this is an impractical
extreme. In both cases, no preemption is possible between
preemption points. It is also conceivable that a totally
aperiodic system would only check to see if preemption
was necessary when an external interrupt was received,
but even in this case, preemption cannot occur when the
system is in certain states, for instance, while a running
program is in a critical section.

Consequently, receival of a higher priority request for
service while a lower priority item is being processed
does not mean the higher priority request is serviced
immediately. Some time will elapse before the higher
priority request is honored. Conceptually, this time
interval can be made arbitrarily small, but in the real
world, doing so is often impractical (prohibitively
expensive).

When scheduling work items instead of individual tasks,
the question about preemption points takes new meaning.
With fewer units of work (i.e., fewer work items than
tasks) we should have lower scheduling overhead and
lower preemption overhead. In many cases, it may be
entirely adequate to preempt only at task execution
boundaries since an individual task execution may only
account for a small fraction of the time it takes to process
a work item. The advantage of preempting only at task
boundaries is that it can be accomplished at the applica-
tion program level without preempting a running task.
Thus the need for a preemptable kernel is eliminated.

To study the impact of preemption, we had to have a
point of comparison, namely the case of no preemption.
From previous measurements, we knew how long it took
to process a work item of each type in the absence of
work items of the other type, i.e., the default case of no
preemption. Now, we studied the case of no preemption,
where both types of work items were assigned the same
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importance, and requests for service for both of these are
made simultaneously and over a range of loads.

The application program’s control logic (monitor package
in fig. 2) ensured that a request for a DP work item is
never made until the previous DP work item request is
processed and likewise for CP work item requests. Hence
only CP work item requests can be received during DP
work item processing and vice versa. In an overload
condition where there is an adequate number of requests
of both types, this leads to an interleaving of CP and DP
work item requests. Consequently, from what we already
observed, we would expect that we could always guar-
antee that a CP work item could be processed within
17.263 milliseconds (the sum of the time to process first a
DP work item and then a CP work item if both CP and
DP work items have the same importance). We found
that this is not the case. We found that there is something
we call contention overhead . When requests for both
CP work items and DP work items are constant and
neither has priority over the other, there can be up to a
14.45 percent throughput degradation on a SUN 3/60.
Consequently, the on-line guarantee has to be increased
by 14.45 percent to at least 19.75 milliseconds, yet the
timing stability of the system has not changed. We can
still offer this guarantee with a similarly small standard
deviation; rather, the guarantee is now not what the theory
predicts, i.e., scheduling property 1. While this deviation
may be an artifact of our design, it is possible that other
phenomena are present in the Ada run-time system—
phenomena, which manifest themselves in the real
world, that are not taken into consideration in the
D-M model.

Table 1 shows the results of an experiment we conducted
that exhibits these unpredicted phenomena. In the
experiment, we set the furnace reading frequencies so
high that there would always be another DP work item to
service before the previous DP work item was completed.
We varied the number of CP work items from 1,001 to
12,001 in increments of 1,000 CP work item requests.
These requests were equally spaced during the 2 minute
(120,000 millisecond) run time for each individual
experiment, rather than aperiodically. The meanings of
the columns in table 1 are as follows. Column 1 is the
number of CP work item requests during each 2 minute
run. Column 2 is the actual number of CP work items
processed. Column 3 is mean time to service a CP
work item in the absence of DP work item processing.
Column 4 is the actual number of DP work items pro-
cessed (in between CP work item processing). Column 5
is the mean time to service a DP work item in the absence
of CP work item processing. Column 6 is the total time
that should  have elapsed given the number of actual CP
and DP work items that were processed and their
respective mean service times.

Notice that, in the case of 1,001 CP work item requests,
this total time figure is 126,207 milliseconds when
in fact the run time was only 120,000 milliseconds
(2 minutes). According to our theory, this should not be
possible. Thus, when relatively small numbers of CP
work item requests are intermixed with DP work item
requests, the system appears to speed up. However, this
phenomenon is not as mysterious as it first appears, but
has to do with the default task scheduling we accepted
from the Ada run-time system we used. When measuring
work item performance on a single processor machine, it

Table 1. Result of equal priority work items with different deadlines

CP
requests

Actual
CPs

CP
mean DPs

DP
mean

Total
time Percent

Contention
overhead

1,001 1,001 9.915 15,825 7.348 126,207 105.00 –5.00
2,001 2,001 9.915 13,617 7.348 119,897 99.99 0.01
3,001 3,001 9.915 11,120 7.348 111,465 92.88 7.22
4,001 4,001 9.915 9,357 7.348 108,464 90.35 9.65
5,001 5,001 9.915 7,617 7.348 105,554 87.96 12.04
6,001 5,941 9.915 5,942 7.348 102,566 85.46 14.53
7,001 5,940 9.915 5,943 7.348 102,564 85.47 14.53
8,001 5,940 9.915 5,943 7.348 102,564 85.47 14.53
9,001 5,941 9.915 5,942 7.348 102,566 85.46 14.53

10,001 5,940 9.915 5,943 7.348 102,564 85.47 14.53
11,001 5,939 9.915 5,942 7.348 102,546 85.45 14.53
12,001 5,938 9.915 5,941 7.348 102,528 85.44 14.53
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is necessary to run both the external event simulator and
the RTS system on the same processor. CP work item
requests for service are initiated by the host processor that
is part of the external event simulator whereas DP work
item requests are initiated in the RTS system itself. At the
completion of a DP work item the default task scheduler
in the Ada run-time system often schedules the tasks from
the external event simulator next. If there is a CP work
item request waiting, it can be initiated more rapidly than
waiting until the transporter task runs again to start
another DP work item. Consequently, we end up
achieving even better throughput than we might expect
because the CP and DP work item processing times
included this additional task scheduling overhead in their
original measurements. We discovered these findings by
analyzing detailed event traces of similar runs.

As the number of CP work item requests increases, this
apparent speedup disappears and gradually turns into a
slowdown that culminates at a 14.53 percent decline in
throughput over what the model predicts. When 6001 CP
work item requests are made during the 2 minute run, the
RTS system can no longer get them all done because CP
work items and DP work items both have the same prior-
ity, and the system can only process about 5,940 of each
during a 2 minute run. Therefore, with yet higher CP
work item requests for service during a 2 minute run,
the results do not change as table 1 shows. Because the
experimental data produce a covariance of approximately
zero, the CP and DP work item processing is essentially
independent. At the present time we do not understand
what causes this slowdown because the cause of the
phenomenon appears to be below the threshold of our
current event tracing tools.

The next experiment was running RTS with preemption
where CP work items had higher importance than DP
work items. Table 2 shows the results of this experiment.

We get considerably more CP work items processed
during a 2 minute run. As can be seen, the number of CP
work items that can be processed now levels off near
8,400. The varying figures have to do with the fact that
preemption occurs at various levels of completion of DP
work items. Notice that approximately 2,800 DP work
items still get processed. In order to reduce this preemp-
tive leaking  further it would be necessary to design the
system to preempt running tasks, thus increasing preemp-
tion overhead. Notice that the preemption overhead at
task boundaries is insignificant up to about 5,000 requests
for CP work items in a 2 minute interval. In fact, as in the
previous case, with moderate numbers of CP work item
requests, RTS runs better than the theory predicts. For
real world systems this high level of work item preemp-
tion would probably never occur, thereby showing that
our method introduces little preemption overhead into the
solution. Subsequently, we took the opportunity to run
our case study on a Sparcstation 10 and a Silicon
Graphics IRIS 4D/440VGXT workstation. We noticed
that the mean service time for DP processing and the
corresponding standard deviation were an order of
magnitude smaller. Although we did not have time to
make all the measurements made on the SUN 3/60, the
results appear to scale linearly, i.e., standard deviations
are still nearly three orders of magnitude less than
measured computation times of work items. The Ada
compilers we used (and run-time environments) were
from Verdix. Though different versions existed on

Table 2. Results of preemption at task boundaries

CP
requests

Actual
CPs

CP
mean DPs

DP
mean

Total
time Percent

Contention
overhead

1,001 1,001 9.915 16,380 7.348 133,959 111.63 –11.63
2,001 2,001 9.915 14,972 7.348 129,854 108.21 –8.21
3,001 3,001 9.915 12,775 7.348 123,625 103.02 –3.02
4,001 4,001 9.915 11,078 7.348 121,071 100.89 –0.89
5,001 5,001 9.915 9,375 7.348 118,472 98.73 1.27
6,001 6,001 9.915 7,736 7.348 116,344 96.95 3.05
7,001 7,000 9.915 5,584 7.348 110,436 92.03 7.97
8,001 8,001 9.915 3,590 7.348 105,709 88.09 11.91
9,001 8,330 9.915 2,780 7.348 103,019 85.35 14.15

10,001 8,402 9.915 2,802 7.348 103,915 86.60 13.4
11,001 8,330 9.915 2,780 7.348 103,019 85.85 14.15
12,001 8,398 9.915 2,801 7.348 103,848 86.54 13.46
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different platforms, we found the impact of these differ-
ences to be negligible in our experiments.

6. Proofs of Peer Tasking Behavior

The D-M model assumes that the status of a task whose
start time has elapsed can be characterized by two param-
eters, C and D, that represent the computation time (C)
and the deadline (D) by which the task must complete.
Furthermore, it is implicitly assumed that the schedul-
ability of a set of tasks { ti} for i  = 1 . . . m  can be deter-
mined solely by this information, Ci (the computation
time for task t i), and Di  (the deadline for task ti) for each
task ti under the conditions stated in the hypotheses of
their theorems. The D-M model rules out data- or state-
dependent algorithms in tasks since the task computation
times are assumed to be constant. It also rules out pre-
emption overhead or scheduling algorithm overhead.
There are many real world problems where it is not
possible to know the computation times Ci very accu-
rately for any or all of the tasks ti. This can be due to
several reasons. In practice what we usually have is an
average computation time Ai and a variance measured by
a standard deviation si. In many cases si can be significant
with respect to Ai .

To prove the behaviors, we use the following theorem
(ref. 1, p. 1503) which was proved for both single and
multiple processor machines.

THEOREM (Dertouzos and Mok, 1989). If a
schedule exists that meets the deadlines of a set of
tasks whose start times are the same, then the same
set of tasks can be scheduled at run time even if their
start times are different and not known a priori.
Knowledge of the preassigned deadlines and compu-
tation times alone is enough for scheduling. One
successful run-time scheduling algorithm is the
Least Laxity algorithm.

Let us now consider what it is we need to prove. First, we
want to show that if a work item w  can be performed once
in time C by a collection of tasks { ti} where i  = 1 . . . m,
then w can always be scheduled at run time to meet a
deadline D = C  provided there do not exist work items
of higher priority to be scheduled when the request for
service for this work item is made, and provided no
requests for service for a work item of higher priority is
made before time C . This is equivalent to constant
computation time for a work item; the constant is the
inverse of the throughput (for this type of work item),
calculated in work items per second. If it were known that
the computation time of a work item was the sum of the
computation times of the tasks that accomplish the work
item then, of course, the work item computation time

would be constant and there would be nothing to prove.
But since computation times in the D-M model are known
at the task level and since it is known that the total time it
takes for a collection of tasks to execute is not necessarily
the sum of the computation times of the individual tasks
(recall the theoretical overhead of RMS (ref. 5)) it is not
clear without proof that the computation time for a given
type of work item is constant.

If we know that a given work item w can be executed
once in time C then all the tasks in w would be executed
within time C . Let W denote the set of tasks that accom-
plishes w . If we set the start time for each of these tasks to
zero (even though they do not all start at time zero, which
is permitted in the model) and the deadline for each of
these tasks to C, then it is clear that the task set W was
scheduled in such a way that all the tasks in W met the
common deadline C. Hence a schedule exists as described
in the hypothesis of their theorem. Now applying their
theorem, we see that in the future it will always be pos-
sible to schedule this task set W  at run time such that the
deadline C  can be met, provided, of course, that there
does not exist a higher priority work item to schedule at
the time the request for service for w  is made and pro-
vided no request for service for a higher priority work
item is made prior to time C . Consequently, we have
established what we set out to prove. We record this
result as

THEOREM 1. If a work item w can be scheduled
once to execute in time C, then the set of tasks that
executes w can always be scheduled at run-time to
meet a deadline equal to C provided there is no
request for service for a work item of higher priority
during this time period.

Theorem 1 applies to both single and multiprocessor
machines since the Dertouzos and Mok theorem is so
proved. Also Theorem 1 implies that the variance in the
execution time of w  is zero, which never happens in the
real world. This is strictly a property of the D-M model.

Next we want to show that for a single processor machine
there is no on-line task scheduling overhead for work
items that are performed by a collection of peer tasks.
This is not to say there is no scheduling overhead,
because we must schedule the work items. For example,
in our case study, scheduling overhead at the task level
defaulted to a dispatch operation of first in first out
(FIFO).

We again invoke Dertouzos and Mok’s theorem. The
Least Laxity algorithm will successfully produce an
on-line schedule for a schedulable peer task set W corre-
sponding to the work item w  given the preassigned
deadline D  (which we assign to each task in W) and the
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work item computation time C ≤  D. For a single processor
machine, the Least Laxity algorithm and the Earliest
Deadline First (EDF) algorithm are equivalent in that if a
task set can be scheduled with one of them then it can be
scheduled by the other. Dertouzos and Mok state the EDF
algorithm as follows:

Execute at any time the task whose deadline is
closest. Ties are broken arbitrarily.

Consequently, EDF is an algorithm that will be successful
in producing an on-line schedule for the task set W given
the knowledge of the preassigned deadline D and work
item computation time C. Since the tasks in W are peer
tasks, none have priority over the other, so there is no task
level scheduling overhead to assure a particular ordering
of the tasks. Also, since all the tasks have the same dead-
line D , whatever order they are executed in will satisfy
the EDF scheduling criteria. Therefore, we can accept the
default scheduling algorithm of the run-time system or
operating system with the assurance that this default
scheduling will be optimal. In particular, if the system is
implemented in the Ada programming language as our
test bed is, we control the execution order of the peer
tasks merely by the proper use of guards on the task
entries and task calls to assure proper logical execution
of the task set. We have established

THEOREM 2. For a single processor machine, there
is no on-line task scheduling overhead in the peer
tasking theory.

COROLLARY. Peer tasking forces optimal task level
scheduling by default on a single processor machine.

The proof of the corollary follows from the fact that
whatever order the tasks are executed in satisfies the EDF
scheduling criteria and the fact that EDF scheduling is
optimal for a single processor machine (ref. 5).

Finally, we want to show that throughput is not degraded
during overload. By an arbitrary work load A we mean a
finite sequence of work items {wi}, i = 1 . . . m such that
if i < j then the request to do wi occurred prior to the
request to do wj. We assume that the system receives the
sequence A and reorders it into a sequence W of work
items, wj, j = 1 . . . n, consisting of all requests received
up to the present (so n ≤ m) and such that if i < j then wi
is more important than wj or they are of equal importance
and the request for wi preceded the request for wj. We
refer to W as a prioritized work load.

By an overload period we mean a period of time P that
begins at some time t0 at which a scheduling decision
must be made and a prioritized work load W consisting
several work items such that all the work items in W are
requested to finish by t0 + P and the computation time of

any member of W is less than or equal to P , but P < M
where M is the sum of the computation times of members
of W. We say that throughput is not degraded during
overload if for each overload period t0, P, W, the
maximum number of work items from W are completed
by t0 + P subject to the constraint that no additional
requests occur before t0 + P and if w1  ∈ W is completed
and w2 ∈ W is not completed by t0 + P, then either the
importance of w1 was greater than the importance of w2
or else w1 and w2 had the same importance but w1 was
requested prior to w2.

First we demonstrate that it is true for a workload
consisting of a single work item type, all with equal
importance. All work items in W have the computation
time C  (by Theorem 1). Since work item processing time
is constant, the system will produce a throughput T = P/C
work items. T may not be an integral number, so let R = T
truncated to the nearest positive integer. Then there must
exist more than R work items in W. Consequently, if the
system logic is to do the first R requests for this particular
work item, then the maximum number of work items
from W are completed subject to the constraint that if
w1, w2 ∈ W  and w1 is executed but w2 is not, then w1
was requested prior to w2. Therefore, throughput is not
degraded during overload in this case.

Next consider a workload W consisting of work items of
multiple types or importances. Let w1 be the first work
item in W. Then w1 has some computation time C1 and
we know that the system can process T1 = P/C1  of this
type work item during P. Let R1 = T1 truncated to the
nearest positive integer. If there are at least R1 + 1 con-
secutive work items in W of the type of w1, the system
will process R1 of them during P . Hence the maximum
number of work items from W subject to the constraint
that if w1, w2 ∈ W and w1  is processed but w2 is not, then
either w1 was more important than w2 or else they have
the same importance but the request for w1 preceded the
request for w2. In other words throughput will not be
degraded during overload.

If there do not exist R1 + 1 consecutive work items of this
type in W, let k1 ≤ R1 denote the number of consecutive
work items of this type in W. By Theorem 1, a time of
k1C1 will be expended executing these k1 work items and
there will be P  – k1C1 time remaining to process the work
items in W . Let w2 ∈ W  be a work item in W following
the k1 work items of the type of work item w1. If the
computation time C2 of w2 is greater than P – k1C1,
then again we have shown no degradation of throughput
during overload in this case. If C2 < P – k1C1, then by
an argument similar to the above, either there will be no
throughput degradation during overload or else there
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exists a positive integer k2 ≤ R2 where R2 is the positive
integer obtained by truncating T2 = (P – k1C1)/C2.

We cannot continue this process indefinitely since W has
only finitely many work items. Hence after some k itera-
tions, there will be more consecutive work items of some
type wj than can be processed during the remaining time,
so, as before, the system will process the maximum
number of work items from W subject to the constraint
that if w1, w2 ∈ W  and w1 is processed but w2 is not,
then either w1 was more important than w2 or else they
had equal importance but the request for w1 preceded the
request for w1. Therefore, throughput is not degraded
during overload. We record this result as

THEOREM 3. There is no throughput degradation
during overload with peer tasking.

Again, Theorem 3 holds on both single and multipro-
cessor machines.

7. Concluding Remarks

The peer task method addresses the “disconnect” between
design theory and scheduling theory. This paper has tied
together an existing real-time mathematical scheduling
model with three new scheduling properties, our prescrip-
tive design guidelines, and a design case study with
measurements of how close its real-time behavior
approaches what is predicted.

The peer task method offers a scheduling guarantee that is
qualitatively different from the type of guarantee offered
by urgency based scheduling. The work item throughput
guarantee is localized in time and with respect to the set
of tasks that accomplishes the work item. Furthermore,
this guarantee is independent of state; it will always hold
regardless of the load on the system. We call this a hard
local guarantee. Urgency based scheduling offers what
we call soft global guarantees. By soft we mean that a
guarantee is dependent on the state of the system. By
global we mean that it applies to all tasks at all times.
This is because conventional urgency based scheduling
tries to guarantee that all deadlines are met as long as
the theoretical overload threshold is not exceeded. The
theoretical overload threshold depends on the algorithm
employed. For EDF on a single processor machine it is
100 percent processor load. For RMS it is approximately
69 percent for ten tasks (ref. 5). Above these theoretical
load levels these guarantees are void and the behavior is
not guaranteed.

Our design method rules produce what can be thought of
as first (1o), second (2o), and third order (3o) effects.
Rule 1 produces 1o effects because it guides system
decomposition for scheduling purposes, namely into

specification level work items. This rule has the greatest
overall effect on the behavior of the system. Rule 2 pro-
duces 2o effects at the task (process) level. It guides
assignment of objects and functions to tasks. Rule 3 gives
3o effects because it optimizes the tasks (or processes). It
has the least effect on overall system behavior. Although
these rules guide, they are not a recipe for all the details
of a successful design.

As a system organizing principle for scheduling, the
method uses importance. This abstraction is superior to
urgency based priority schemes for systems where over-
load is unavoidable and dynamic reallocation of resources
based on user or domain specified semantics is a
necessity.

8. Further Research

The effective use of the work item concept is closely tied
to the capability to implement the abstraction of impor-
tance. More research is needed on this abstraction as a
scheduling mechanism. A recent survey (ref. 15) on
classical scheduling results focuses exclusively on
urgency based results. Many of these results are signifi-
cantly practical in specific domains. But efforts in
generalizing these have led to increasingly complex
solutions so that the effort to implement, maintain, and
modify systems accommodating these outweighs the
benefits. No less than a major shift in thinking outside the
pale of existing mathematical models may be needed.
Whether the approach introduced here of statistically
approximating the D-M model may be carried further
without falling into the same trap remains to be investi-
gated. Perhaps the D-M model may be augmented, or
replaced, in a way that retains significantly practical
results yet incorporates more fully the importance
concept. This area is one candidate for further research.
Besides the development of its theoretical underpinnings,
standard services to support its implementation are
needed.

Development of such services has begun as seen in user
defined or customized scheduling features in MACH 3
(ref. 16). With this facility, users may select and control
system resources through their own designation of
parameters and embed their own custom scheduling
algorithms in the operating system kernel. Additional
flexibility and customization of such facilities over what
is available here may be needed to make full use of
importance based scheduling. This area is another
candidate for further research. On the other hand, support
facilities for importance may be coming from outside the
conventional disciplines of real-time scheduling and
operating systems. The technology driven to address
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multimedia’s and the information highway’s needs have
significant real-time requirements. The infrastructure
being developed to address these may provide a rich set
of interfaces to resources that will enable importance
based scheduling in LDPARTS, particularly those that
have been designed to provide configurable isochronous
services. Investigation of the definition and use of such
services in a case study using the peer task method is
another area for further research.

Finally, more experience in the application of the method
is needed. We have discussed the underlying elements of
the method, the abstraction of importance and the means
to implement it. Separate from these, further investigation
in how to use and tailor these guidelines in the initial
phases of a project is needed. Preferable to inventing new
software packages is the investigation of adapting and
integrating existing ones. Since the method is best suited
in a “cut and try” project development environment, and
given the current trend to rapid prototyping to evaluate
and verify system requirements, our approach may be
readily adopted. However, rapid prototypes are often built
to be discarded after initial evaluation, and the tools used
offer little, if any, integration into the remainder of the
life cycle. Because of our method’s reliance on statisti-
cally significant data gathered in the real environment
such use of rapid prototyping is not optimal. A better
approach is to use a tool such as ROOM (ref. 17) that
integrates rapid prototyping into the life cycle. Further
research with contemporary tools and paradigms such as
objects will help us build in-budget and on-time large
scale distributed parallel architecture real-time systems.
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Real-Time Design with Peer Tasks
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Michael J. Barnes†

We introduce a real-time design methodology for large scale, distributed, parallel architec-
ture, real-time systems (LDPARTS), as an alternative to those methods using rate or dead-line monotonic
analysis. In our method the fundamental units of prioritization, work items, are domain specific objects with
timing requirements (deadlines) found in user’s specification. A work item consists of a collection of tasks of
equal priority. Current scheduling theories are applied with artifact deadlines introduced by the designer
whereas our method schedules work items to meet user’s specification deadlines (sometimes called end-to-
end deadlines).

Our method supports these scheduling properties. Work item scheduling is based on domain specific
importance instead of task level urgency and still meets as many user specification deadlines as can be met
by scheduling tasks with respect to urgency. Second, the minimum (closest) on-line deadline that can be
guaranteed for a work item of highest importance, scheduled at run time, is approximately the inverse of the
throughput, measured in work items per second. Third, throughput is not degraded during overload and
instead of resorting to task shedding during overload, the designer can specify which work items to shed.
We prove these properties in a mathematical model.
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